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Abstract: We show how two important types of phase transition in large Nc gauge

theory with fundamental flavours can be cast into the same classifying framework as the

meson-melting phase transition. These are quantum fluctuation induced transitions in the

presence of an external electric field, or a chemical potential for R-charge. The classifying

framework involves the study of the local geometry of a special D-brane embedding, which

seeds a self-similar spiral structure in the space of embeddings. The properties of this spiral,

characterized by a pair of numbers, capture some key universal features of the transition.

Computing these numbers for these non-thermal cases, we find that these transitions are

in the same universality class as each other, but have different universal features from the

thermal case. We present a natural generalization that yields new universality classes that

may pertain to other types of transition.
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1. Introduction

A lot of attention has been focused on the properties of the system consisting of the

intersection of Nc color Dp-branes and Nf flavour Dq-branes (p < q). In the large Nc ≫ Nf

limit the Dp-branes can be substituted by their corresponding black p-brane supergravity

background, while the Dq-branes are in the probe limit [1].

In addition the Dq-branes are extended along q−p of the 9−p dimensions transverse to

the Dp-brane, and as a result their gauge degrees of freedom are frozen compared to those of

the Dp-brane. The dynamics of the p-q strings (which transform in the fundamental of the

SU(Nc) low energy gauge theory) and the q-q strings are described by the Dirac-Born-Infeld

action of the Dq-branes.

Among the issues of interest was the study of the thermodynamic properties of the

dual [2 – 4] Yang-Mills theory and certain thermal phase transitions in the dynamics of

the fundamental matter. The first study of this nature was for the D3/D7 system and

was considered in ref. [5], where the authors considered the near-horizon limit of the non-

extremal black 3-brane solution, corresponding to the AdS5-BH×S5 geometry (the anti-de

Sitter (AdS) spacetime contains a black hole). The D7-brane wraps a S3 ⊂ S5 and extends

in the radial direction of the AdS5-BH. The size of the S3 varies as a function of the radial

coordinate. The D7-brane embeddings then naturally form two classes: embeddings that

reach the horizon and hence fall into the black hole, and embeddings for which the wrapped

S3 shrinks to zero size at some radial position. For these, the D7-brane world-volume

simply closes smoothly before the horizon. In an Euclidean presentation, the compact,

unbounded parts of the D7-brane have the topology S3×S1 since the Euclidean time has a

periodicity set by the inverse temperature of the system. The classes are then distinguished

by one or the other compact space shrinking away. The authors of ref. [5] proposed that
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the (topology changing) transition of the D7-brane embeddings corresponds to a type of

confinement/deconfinement phase transition, now in the meson sector of the theory. This

system has been extensively studied in refs. [8]–[27] and it was shown that it is a first order

phase transition providing a holographic description of the meson melting phase transition

of the fundamental matter.

There is also a unique critical embedding separating those two classes. This solution

reaches the horizon and has a shrinking S3. It has a conical singularity. Solutions of this

type will occupy much of our attention in this paper. Many of these features generalize to

the general Dp/Dq system. In ref. [9] the Dp/Dq system was considered and some universal

properties, associated with this critical solution separating the two classes of embedding,

were uncovered. In particular it was shown that for a certain temperature the theory

exhibits a discrete self-similar behavior, manifested by a double logarithmic spiral in the

solution space. This space of solutions is parameterized by the bare quark mass and the

fermionic condensate. (Geometrically these correspond, respectively, to the asymptotic

separation of the D7- and D3- branes and the degree of bending of the D7-branes away

from the D3-branes.)

The region of solution space where the self-similar spiral is located is unstable, in fact:

There is a first order phase transition associated with the physics of the system jumping

between branches of solutions and bypassing it entirely. Nevertheless, it seems that impor-

tant features of the full physical story can be captured by examining the neighbourhood

of this critical solution. It is remarkable that the critical exponents (or better “scaling

exponents”, so as not to confuse the physics with the nomenclature of second order phase

transitions) characterizing this logarithmic structure exhibit universal properties and de-

pend only on the dimension of the internal Sn wrapped by the Dq-brane. The precise value

of the critical temperature is irrelevant. The structure is determined by focusing on the

local geometry near the conical singularity of the critical Dq-brane embedding, and the

exponents are then naturally determined by the study of possible embeddings in a Rindler

space [7, 9].

The studies described above concern a thermally driven phase transition. As the tem-

perature passes a certain threshold, thermal fluctuations seek out the new global minimum

that appears and the system undergoes a transition to a new phase. In this paper we study

transitions of the system under the effect of two different types of control parameters: an

external electric field and an R-charge chemical potential, revisiting work done on these

systems in refs. [16, 18]. We show that the corresponding scaling exponents are again uni-

versal and depend only on the dimension of the internal sphere wrapped by the Dq-brane.

We find that the key properties of the critical solution can be determined from the local

properties of the geometry, and we find that this geometry arises naturally by working in

a rotating frame, arrived at using T-duality. The resulting physics is not controlled by

thermal dynamics, the local geometry is not Rindler, and so the exponents are different.

The phase transition is driven by the quantum (as opposed to thermal) fluctuations of the

system, as can be seen from the fact that they persist at zero temperature. It is satisfying

that we can cast these different types of transition into the same classifying framework.

The structure of the paper is as follows. We begin in section 2 by reviewing the results
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of refs. [7, 9] for the thermally driven phase transition, focusing on the structure of the

unstable critical solution, extracting the universal properties of the corresponding scaling

exponents. We highlight the natural appearance of a Rindler geometry.

In section 3.1 we consider the case of an external electric field and in the insula-

tor/conductor phase transition discussed in ref. [16]. By employing an appropriate T-dual

description of the system we demonstrate that the structure of the instability and the

scaling exponents can be naturally studied by classifying the possible embedding in a flat

rotating frame. We observe that these scaling exponents are again universal and depend

only on the dimension of the internal Sn sphere, wrapped by the Dq-branes.

In section 3.2 we consider instead the presence of a finite R-charge chemical potential

in the Dp/Dq system and demonstrate that the resulting phase transition has the same

scaling exponents as the insulator/conductor phase transition driven by an external electric

field.

We consider some generalizations of the discussion in section 4 and close with some

remarks in section 5.

2. Thermal phase transition

Let us begin by reviewing the result of refs. [7, 9]. We will be using the notations of ref. [9].

Consider the near-horizon black Dp-brane given by:

ds2 = H− 1
2

(

−fdt2 +

p
∑

i=1

dx2
i

)

+H
1
2

(

du2

f
+ u2dΩ2

8−p

)

, (2.1)

eΦ = gsH
(3−p)/4 , C01...p = H−1 ,

where H(u) = (R/u)7−p, f(u) = 1 − (uH/u)
7−p and R is a length scale (the AdS radius

in the p = 3 case). According to the gauge/gravity correspondence, string theory on this

background is dual to a (p + 1)-dimensional gauge theory at finite temperature. Now if

we introduce Dq-brane probe having d common space-like directions with the Dp-brane,

wrapping an internal Sn ⊂ S8−p and extended along the holographic coordinate u, we will

introduce fundamental matter to the dual gauge theory that propagates along a (d + 1)-

dimensional defect.

If we parameterize S8−p by:

dΩ2
8−p = dθ2 + sin2 θdΩ2

n + cos2 θdΩ2
7−p−n , (2.2)

where dΩ2
m is the metric on a round unit radius m-sphere, the DBI part of the Lagrangian

governing the classical embedding of the probe is given by1:

L ∝ e−Φ
√

−|gαβ| =
1

gs
un sinn θ

√

1 + fu2θ′2 (2.3)

The embeddings split to two classes of different topologies: “Minkowski” embeddings,

which have a shrinking Sn above the vanishing locus (the horizon) and yield the physics of

1We consider only systems T-dual to the D3/D7 one, which imposes the constraint p − d + n + 1 = 4.
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Figure 1: Schematic diagram depicting the Minkowski (left) and black hole (right) embedding

solutions that are separated by a “critical” embedding (centre), which has a conical singularity at

the event horizon.

meson states and “black hole” embeddings that reach the vanishing locus, corresponding

to a melted/deconfined phase of the fundamental matter. These classes are separated by a

critical embedding with a conical singularity at the vanishing locus, as depicted in figure 1.

It is convenient to introduce the following coordinates:

r
7−p

2 =
1

2

(

u
7−p

2 +

√

u7−p − u7−p
H

)

, (2.4)

L = r cos θ , and ρ = r sin θ .

Then one can show [1, 6] that the asymptotic behavior of the embedding at ρ→ ∞ encodes

the bare quark mass mq = m/2πα′ and the quark condensate 〈ψ̄ψ〉 ∝ −c of the dual gauge

theory via the expansion:

L(ρ) = m+
c

ρn−1
+ . . . (2.5)

After solving numerically for each embedding of the Dq-brane, the parameters m and c

can be read off at infinity. From the full family of embeddings, a plot of the equation of

state of the system c(m) can be generated. The resulting plot for the D3/D7 system [10]

is presented in figure 2. The two different colors (and line types) correspond to the two

different classes of embeddings. The equation of state is a multi-valued function, and there

is a first order phase transition when the free energies of the uppermost and lowermost

branches match.

The main subject of our discussion is the spiral structure in the solution space near the

critical embedding [9, 14]. In the enlarged portion on the right in figure 2 it is located to the

lower left, roughly at m = 0.9185, −c = 0.0225. The spiral structure that is hidden near

this point is a signal of the discrete self-similarity of the theory near the critical solution.

In order to understand the origins of the spiral, we zoom into the space-time region

near the tip of the cone of the critical embedding [7, 9] using the change of variables:

u = uH + πTz2 ; θ =
y

R

(uH

R

)
3−p

4
; x̂ = x

(uH

R

)
7−p

4
. (2.6)
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Figure 2: Plot of the equation of state c(m). The zoomed region shows the location of the

first order phase transition. There is a spiral structure hidden near the “critical” solution in the

neighbourhood of m = 0.9185, −c = 0.0225

Here T is the temperature of the background given by:

T =
7 − p

4πR

(uH

R

)
5−p

2
. (2.7)

Leaving only the leading terms in z results in the following metric:

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
n + dx̂2

d + . . . (2.8)

The metric (2.8) corresponds to flat space in Rindler coordinates. The embeddings

of the Dq-branes in the background (2.8) again split into two different classes: Minkowski

embeddings characterized by shrinking Sn (y = 0) at some finite z0, and black hole em-

beddings, which reach the horizon at z = 0 for some finite y = y0 (the radius of the

induced horizon). The equation of motion is derived from the Dirac-Born-Infeld action of

the Dq-branes, which has the following Lagrangian:

L ∝ zyn
√

1 + y′2 . (2.9)

The equation of motion derived from this reads:

zyy′′ + (yy′ − nz)(1 + y′2) = 0 . (2.10)

Solutions of this equation enjoy the scaling property y(z) → 1
µy(µz), in the sense that if

y(z) is a solution to the equation (2.10) so is 1
µy(µz). Under such a re-scaling the initial

conditions (z0, y0) for the two classes of embeddings scale as:

z0 → z0/µ; y0 → y0/µ; (2.11)

This suggests the existence of a critical solution characterized by z0 = y0 = 0. One can

check that y =
√
nz is the critical solution. It has a conical singularity at y = z = 0.

To analyze the parameter space of the solutions we can linearize the equation of mo-

tion (2.10) near the critical solution by substituting y(z) =
√
nz+ξ(z), for small ξ(z). The

resulting equation of motion is:

z2ξ′′(z) + (n+ 1)(zξ′(z) + ξ(z)) = 0 , (2.12)
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which has a general solution of the form:

ξ(z) =
1

zrn
(A cos(αn ln z) +B sin(αn ln z)) , (2.13)

with rn =
n

2
; αn =

1

2

√

4(n+ 1) − n2 .

Note that αn are real only for n ≤ 4, which are the cases naturally realized in string

theory [14]. Now the scaling property of equation (2.10), combined with the form of the

solutions (2.13) suggests the following transformation of the parameters (A,B) under the

re-scaling of the initial conditions given in equation (2.11):

(

A′

B′

)

=
1

µrn+1

(

cos (αn lnµ) sin (αn lnµ)

− sin (αn lnµ) cos(αn lnµ)

)(

A

B

)

. (2.14)

For a fixed choice of the parameters A and B, the parameters (A′, B′) describe a double spi-

ral, whose step and periodicity are set by the real and imaginary parts of the critical/scaling

exponents rn and αn.

Equation (2.10) has a Z2 symmetry [7] relating the two classes of solutions (Minkowski

and black hole embeddings). If the parameters (A,B) describe one class of embeddings,

then the parameters (−A,−B) describe the other. In this way the full parameter space

near the critical solution (given by A = 0, B = 0) is a double logarithmic spiral.

This self-similar structure of the embeddings near the critical solution in our Rindler

space is transferred by a linear transformation to the structure of the solutions in the (m, c)

parameter space. If we call (m∗, c∗) the parameters corresponding to the critical embedding

from figure 1, then sufficiently close to the critical embedding we can expand:

(

m−m∗

c− c∗

)

= M

(

A

B

)

+O(A2) +O(B2) +O(A,B) . (2.15)

The constant matrix M cannot be determined analytically and depends on the properties

of the system. Generically it should be invertible (numerically we have verified that it is)

and therefore in the vicinity of the parameter space close to the critical embedding (m∗, c∗)

there is a discrete self-similar structure determined by the transformation:

(

m′ −m∗

c′ − c∗

)

=
1

µrn+1
M

(

cos (αn lnµ) sin (αn lnµ)

− sin (αn lnµ) cos(αn lnµ)

)

M−1

(

m−m∗

c− c∗

)

. (2.16)

Let us define two solutions to be “similar” if:
(

|m′ −m∗|
|c′ − c∗|

)

=
1

µrn+1

(

|m−m∗|
|c− c∗|

)

. (2.17)

Then one can see from equation (2.16) that this is possible only for a discrete set of µs

given by:

µ = ekπ/αn ; k = 1, 2, . . . (2.18)
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Note that in general the matrix M in equation (2.16) will deform the spiral structure given

by the transformation (2.14). However the scaling properties of the theory remain the

same as they are completely determined by the scaling exponents: rn, αn. Furthermore

one can see that the scaling exponents depend only on the dimension of the internal sphere

Sn wrapped by the Dq-brane and are thus universal, in the sense that the detailed value

of the critical temperature is irrelevant. It is the spiral structure that ultimately seeds the

multi-valuedness of the space of solutions, twisting the (m,−c) curve back on itself as in

figure 2. Therefore, it is the spiral — and the neighbourhood of the critical solution from

where it emanates — that is responsible for the presence of a first order phase transition

in the system. Whether there is a spiral or not can be read off from the scaling parameters

(rn, αn), and since [14] for all consistent Dp/Dq systems the condition n ≤ 4 is satisfied the

corresponding thermal phase transition (meson melting at large Nc) is a first order one.

3. Quantum-induced phase transitions

In this section we will consider a different class of phase transitions. These are arise in

the presence of external fields, and can happen even at zero temperature, and so since the

fluctuations driving the transition are no longer thermal, they might be expected to be in a

different class. Naively, the broad features of the equation of state — multi-valuedness and

so forth — have similarities with the thermal case, and so it is natural to attempt to trace

the extent to which these similarities persist. We will find that once we cast these systems

in the language of the previous section, the similarities and differences will be quite clear.

We will first concentrate on the case of an external electric field. The flavoured system,

at large enough electric field, has an insulator/conductor phase transition, as studied in

ref. [16]. As with the thermal transition of the last section, the mesons dissolve into their

constituent quarks, but this time it is due to the electric field overcoming their binding

energy. The transition is of first order.

As we saw in the previous section the scaling properties of the thermally driven phase

transition are naturally studied in a Rindler frame with a temperature set by the temper-

ature of the background. In ref. [16] it was shown that in analogy to the thermally driven

phase transition there is a nice geometrical description of the electrically driven phase tran-

sition, and the structure of the system can be again characterized by an unstable critical

embedding with a conical singularity at an appropriate vanishing locus (analogous to the

event horizon). Here, we will generalize this description to the case of the Dp/Dq system.

Furthermore after an appropriate T-duality transformation we will show that the van-

ishing locus corresponds to an effective “ergosphere” due to a rotation of the coordinate

frame along the compact directions of the background. The instability near criticality is

then naturally interpreted as an instability due to the over-spinning of the D(q − 1) brane

probes (in the T-dual background) as they reach the ergosphere. We then study the struc-

ture of the theory near criticality by zooming in on the space-time region in the vicinity of

the conical singularity. Once again, we will find that the structure is entirely controlled by

the dimension of the internal sphere, Sn, wrapped by the D(q − 1)-branes (in the T-dual
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background) — details such as the value of the electric field and the temperature of the

system, are irrelevant.

3.1 Criticality and scaling in an external electric field

Let us consider the near-horizon black Dp-brane given by the background in equation (2.1).

Following a similar idea [12] for producing a background magnetic field, if we turn on a pure

gauge B-field in the (t, xp) plane [13, 16, 17], in the dual gauge theory this will correspond

to an external electric field, oriented along the xp direction:

B = Edt ∧ dxp . (3.1)

The resulting Lagrangian is:

L ∝ e−Φ
√

−|gαβ +Bαβ| =
1

gs

√

f − E2H

f
un sinn θ

√

1 + fu2θ′2 . (3.2)

This leads to the existence of a vanishing locus at u = u∗ given by:

u7−p
∗ = u7−p

H +E2R7−p , (3.3)

at which the action (3.2) vanishes. Notice that this is distinct from the horizon, and even at

zero temperature will be present. A study of the local physics near this locus will therefore

pertain to non-thermal physics.

The embeddings split into two different classes: Minkowski embeddings which have a

shrinking Sn above the vanishing locus and correspond to meson states and embeddings

reaching the vanishing locus, corresponding to a deconfined phase of the fundamental

matter. These classes are separated by a critical embedding with a conical singularity at

the vanishing locus. Our goal is to explore the self-similar behavior of the theory near this

critical embedding and calculate the corresponding scaling exponents.

In order to make the analysis closer to the one performed in refs. [7, 9], for the thermal

phase transition (described in the last section), we T-dualize along the xp direction. This

is equivalent to a trading of the pure gauge B-field for a rotating frame in the T-dual

background. Indeed the geometry T-dual to equation (2.1), with the B-field given by

equation (3.1), is given by:

ds̃2 = H− 1
2

(

− f̃ dt2 +

p−1
∑

i=1

dx2
i

)

+ 2H
1
2Edtdx̃p +H

1
2

(

du2

f
+ u2dΩ2

8−p + dx̃2
p

)

, (3.4)

eΦ̃ = gsH
1− p

4 ;

f̃ = 1 −
(u∗
u

)7−p
.

The background given by equation (3.4) corresponds to the near-horizon limit of a stack

of Nc D(p− 1)-branes smeared along the coordinate x̃p. Now if we place a probe D(q− 1)-

brane having (d−1) spatial directions shared with the D(p − 1)-branes, filling the radial

direction u and wrapping an internal Sn inside the S8−p sphere of the background, we will

recover the action (3.2), as we should.
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Note that in these coordinates we have an effective “ergosphere” coinciding with the

vanishing locus given by equation (3.3). Now the critical embedding is the one touching the

ergosphere and having a conical singularity at u = u∗. In the (m, c)-plane this embedding

corresponds to the center of the spiral structure (m∗, c∗).

Despite the analogy with the analysis of the thermal phase transition, in this case

there is a crucial difference, because of the necessity (from charge conservation) for the

D(q − 1)-brane to extend beyond the ergosphere. Indeed since the D(q − 1)-brane is an

extended object one can find static solutions that extend beyond the ergosphere and are

non-superluminal. To this end one should allow the D(q − 1)-brane to extend along the

direction of rotation x̃p. In the original coordinates (before T-dualization) this is equivalent

to a non-trivial profile for the Ap component of the gauge field, which corresponds to the

appearance of a global electric current along the xp-direction [13, 16]. This is the reason why

we refer to the corresponding phase transition as an insulator/conductor phase transition.

After the transition, the quarks are free to flow under the influence of the electric field,

forming a current.

Let us describe how this procedure works in the case of a general D(p − 1)/D(q − 1)-

intersection. Again we will work in the T-dual background (3.4). Let us consider an ansatz

for the D(q − 1)-brane embedding of the form:

θ = θ(u) ; x̃p = x̃p(u) ; (3.5)

this leads to the action:

L∗ ∝
1

gs

√

f − E2H

f
un sinn θ

√

1 + fu2θ′2 +
f2

f −E2H
x̃′2p . (3.6)

Now after integrating the equation of motion for x̃p and plugging the result in the original

Lagrangian, we get the following on-shell Lagrangian:

L∗ ∝
1

gs

√

f − E2H

fu2n sin2n θ −K2
u2n sin2n θ

√

1 + fu2θ′2 . (3.7)

It is easy to verify that if we choose the integration constant K2 in equation (3.7) to satisfy:

K2 = E2H∗u
2n
∗ sin2n θ0 , (3.8)

then the action (3.7) is regular at the ergosphere (u = u∗). Note that at the critical

embedding θ0 = θ∗ ≡ 0 and the constant in equation (3.8) is zero. This constant is

proportional to the global electric current along the xp direction of the original Dp/Dq-

brane system. (See refs. [13, 16] for a discussion in the case of the D3/D7 system.)

We are interested in the scaling properties of the theory, near the critical embedding

solution. Despite the fact that the Lagrangians (3.2) and (3.7) describing the Minkowski

and ergosphere classes of embeddings are different, the fact that at the critical embedding

they coincide (K2=0) shows that the corresponding equations of motion share the same

critical solution. Furthermore, as we will see, the critical exponents are the same for both

types of embedding.
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Let us introduce dimensionless coordinates by the transformation:

u = u∗ + z
Du∗
7 − p

; θ =
y

R

(u∗
R

)
3−p

4
; xi

(u∗
R

)
7−p

4 →xi ; t
(u∗
R

)
7−p

4 → t ; H
3
4
∗ Ex̃p→ x̃p ,

(3.9)

where D2 = (7 − p)2f∗/H
1
2
∗ u

2
∗, H∗ = H|u=u∗

and f∗ = f |u=u∗
. To leading order in z and y

the metric (3.4) is given by:

ds̃2 = −Dzdt2+dz2+dy2+y2dΩ2
n+H

1
2
∗ u

2
∗dΩ

2
7−p−n+2dtdx̃p+

1

E2H∗
dx̃2

p+

p−1
∑

i=1

dx2
i . (3.10)

First consider the case of Minkowski embeddings, characterized by a distance z0 above

the ergosphere at which they close (y = y(z0) = 0). The Lagrangian describing the

D(q − 1)-brane embedding is:

L̃∗ ∝ ynz1/2
√

1 + y′2 , (3.11)

The corresponding equation of motion is given by:

∂z

(

ynz1/2 y′
√

1 + y′2

)

− nyn−1z1/2
√

1 + y′2 = 0 . (3.12)

Equation (3.12) possesses the scaling symmetry:

y → y/µ ; z → z/µ; (3.13)

in the sense that if y = y(z) is a solution to equation (3.12) so is the function 1
µy(µz). Now

under the scaling (3.13) the boundary condition for the Minkowski embedding scales as

z0 → z0/µ. This suggests the existence of a limiting critical embedding with z0 = 0, and

indeed:

y(z) =
√

2nz , (3.14)

is a solution to the equation of motion in equation (3.12). The corresponding D(q − 1)-

brane has a conical singularity at y = z = 0. Now before we linearize equation (3.12) and

calculate the critical exponents let us consider the case of the ergosphere class of solutions

characterized by the radius of the ergosphere induced on their world-volume. Because of

the possibility to extend beyond the ergosphere we should consider the analog of the ansatz

from equation (3.5):

y = y(z); x̃p = x̃p(z) . (3.15)

The corresponding Lagrangian is:

L̃∗ ∝ yn
√

Dz(1 + y′2) + (Fz + 1)x̃′2p , (3.16)

where F = D/E2H∗. After integrating the equation of motion for x̃p and substituting it

into the Lagrangian (3.16), we obtain the following on-shell Lagrangian:

L̃∗ ∝
z1/2

√
Fz + 1y2n

√

(Fz + 1)y2n − y2n
0

√

1 + y′2 . (3.17)
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It is easy to see that the Lagrangian (3.17) is regular at z = 0, y = y0. The equation of

motion for y(z), derived from the Lagrangian (3.16) and with the substituted solution for

x̃p(z) is:

∂

∂z





z1/2y′
√

1 + y′2

√

(Fz + 1)y2n − y2n
0

Fz + 1



− ny2n−1z1/2

√

Fz + 1

(Fz + 1)y2n − y2n
0

√

1 + y′2 = 0 .

(3.18)

It is easy to check that equation (3.14) is a solution to equation (3.18). Furthermore for

z ≪ 1/F one can see that equation (3.18) has the scaling symmetry (3.13) (note that

equation (3.13) suggests y0 → y0/µ). Linearizing equations (3.12) and (3.18) near the

critical solution (3.14) by substituting:

y(z) =
√

2nz + ξ(z) (3.19)

results in the same equation:

z2ξ′′(z) + (n+ 1/2)(zξ′(z) + ξ(z)) = 0 . (3.20)

The general solution of equation (3.20) is given by:

ξ(z) =
1

zrn
(A cos(αn ln z) +B sin(αn ln z)) , (3.21)

where the scaling exponents are given by:

rn =
2n − 1

4
; αn =

1

4

√

7 + 20n− 4n2 . (3.22)

Note that the scaling exponents again, while quite different from those of the thermal

case (see equation (2.13)) depend only on the dimension of the internal Sn wrapped by

the Dq-brane and are thus universal for all Dp/Dq systems. Furthermore the discrete

self-similarity holds for n ≤ 5. By similar reasoning to the thermal case [14], since for

all consistent systems realized in string theory we have that n ≤ 4, for such systems we

may expect that the electrically driven confinement/deconfinement phase transition is first

order and has the described discrete self-similar behavior near the solution that seeds the

multi-valuedness of the equation of state.

The rest of the analysis is completely analogous to the thermal case considered in the

previous section. Therefore we come to the conclusion that close to the critical embedding

(specified by m∗ and c∗) the theory has the following scaling property:

(

m′ −m∗

c′ − c∗

)

=
1

µrn+1
M

(

cos (αn lnµ) sin (αn lnµ)

− sin (αn lnµ) cos(αn lnµ)

)

M−1

(

m−m∗

c− c∗

)

, (3.23)

with rn and αn given by equation (3.22).

It is interesting to compare the analytic results some numerical studies. Let us consider

the D3/D7 system. From equation (3.13) on can see that the variation of the scaling

parameter µ in equation (3.23) can be traded for the variation of the boundary conditions
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Figure 3: The solid line is a fit with trigonometric functions of period 2π. The plots confirm that

the critical exponents of the theory are r3 = 5/4 and α3 =
√

31/4.

of the probe, namely z0 for Minkowski and y0 for ergosphere embeddings. On the other

hand, close to the critical embedding, the change of coordinates in equation (3.9) suggests

that:

θ0 ∝ y0 and u0 − u∗ ∝ z0 , (3.24)

where u0 and θ0 are the boundary conditions for the embeddings in the original (not

zoomed in) background. Note that the parameter u0 is related to the constituent quark

mass Mc [14] (in the absence of an electric field) via Mc = (u0 − uH)/(2πα′).

Close to the critical embedding we have that:

µ = (u0,in − u∗)/(u0 − u∗) and µ = z0,in/z0 , (3.25)

for some fixed boundary conditions u0,in and θ0,in. Now equation (3.23) suggests that for

Minkowski embeddings the plot of (m −m∗)/(u0 − u∗)
rn+1 versus αn ln(u0 − u∗) should

be an harmonic function of αn ln(u0 − u∗) with a period 2π. Similarly for ergosphere

embeddings the plot of (m −m∗)/θ
rn+1
0 versus αn ln θ0 should be a harmonic function of

αn ln θ0 with a period 2π. Note that the physical meaning of θ0 can be related to the value

of the global electric current (see equation (3.8) and the comment below).

As can be seen in figure 3, for both types of embeddings the numerical results are in

accord with equation (3.23) and the analytic results improve deeper into the spiral (large

negative values on the horizontal axis). Our numerical results confirm that the critical

exponents are indeed r3 = 5/4 and α3 =
√

31/4, as the general analytic results yield.

3.2 Criticality and scaling with R-charge chemical potential

Now we study the case when the external parameter is an R-charge chemical potential in

the dual gauge theory. We will consider the system discussed in ref. [18], where a D7-brane

probe in the spinning D3-brane geometry [31, 32] was considered.

The relevant geometry is given by:

ds2 = ∆1/2

(

−(H1H2H3)
−1fdt2 +

u2

R2
d~x2 + f−1du2

)

+ (3.26)

+∆−1/2
3
∑

i=1

Hi

(

µ2
i (Rdφi −Ai

tdt)
2 +R2dµ2

i

)

,
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where

f =
u2

R2
H1H2H3 −

u4
H

u2R2
, Hi = 1 +

q2i
u2
, Ai

t =
u2

H

R

qi
u2 + q2i

,

∆ = H1H2H3

3
∑

i=1

µ2
i

Hi
,

with µ1 = sin θ, µ2 = cos θ sinψ, µ3 = cos θ cosψ. (3.27)

Here the parameter uH would be the radius of the event horizon if the angular momentum

of the geometry was set to zero (qi = 0). The radius uE of the actual event horizon is

determined by the largest root of f(u) = 0. The temperature of the background is given

by [33]:

T =
uE

2πR2u2
H

(

2u2
E + q21 + q22 + q23 − q21q

2
2q

2
3

u4
E

)

=
1

2πR2u2
HuE

(u2
E − u2

1)(u
2
E − u2

2) , (3.28)

where u1 and u2 are the other two roots of f(u) = 0.

The background (3.26) has an ergosphere determined by the expression:

∆(H1H2H3)
−1f −

3
∑

i=1

Hiµ
2
i (A

i
t)

2 = 0 . (3.29)

Since the background (3.26) is asymptotically AdS5 × S5, we can “remove” the ergo-

sphere (3.29), by going to a rotating frame. This is equivalent to gauge shifting Ai
t

from (3.27) such that A′
t
i = −µi

R + Ai
t. The parameters µi

R are set by the condition

A′
t
i|uE

= 0 and hence:

µi
R =

u2
H

R

qi
u2

E + q2i
. (3.30)

From the behaviour at infinity (u → ∞), it is clear that µi
R correspond to the angular

velocities of the frame along φi. In the dual gauge theory these correspond to having

time dependent phases of the adjoint complex scalars or equivalently to R-charge chemical

potentials for the corresponding scalars [30].

In order to restore some of the symmetry of the metric (3.26), we will consider the case

when q2 = q3. This corresponds to having an S3 (parameterized by ψ, φ2, φ3) inside the

deformed S5. Now if we introduce D7-branes filling the AdS-like part of the geometry and

wrapping the S3, we will add fundamental matter to the gauge theory. Furthermore we are

free to rotate the D7-branes along φ1 and the corresponding angular velocity is interpreted

as a time dependent phase of the bare quark mass2. (Recall that in introducing D7-branes

to the D3-brane system we actually add flavours as chiral superfields into the N = 2 gauge

theory). If that phase is the same as the phase of the complex adjoint scalar, µ1
Rt, it is

equivalent to a R-charge chemical potential for both the adjoint scalar and the chiral field.

On the gravity side of the description this is equivalent to letting the D7-branes have

the same angular velocity µ1
R as the rotating frame of the background. Moving to the

2We would like to thank A. Karch for pointing this out to us.
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frame co-rotating with the D7-brane corresponds to moving back to the gauge choice for

A1
t from equation (3.27). The price that we pay is that we again have an ergosphere in the

bulk of the background. It will be convenient to gauge shift A′2
t and A′3

t to A′′2
t and A′′3

t ,

correspondingly, so that the ergosphere is at:

∆(H1H2
2)

−1f −H1 sin2 θ(A1
t )

2 = 0. (3.31)

The shifted forms, A′′2
t and A′′3

t , vanish at the locus given by equation (3.31).

The possible D7-brane embeddings then naturally split into two classes: Minkowski

embeddings that have a shrinking S3 above the ergosphere and ergosphere embeddings

which reach the ergosphere. These classes are again separated by a critical embedding

which has a conical singularity at the ergosphere. In analogy to the T-dual description

of the previous subsection for the external electric field case, the ergosphere embeddings

will have to be extended along φ1 so that they can stay non-space-like beyond the ergo-

sphere3. However in this paper we are interested in the scaling properties of the theory for

parameters (m, c) in the vicinity of the critical parameters (m∗, c∗), corresponding to the

critical embedding. As we saw in the previous section, modifying the ergosphere class of

embeddings so as to be regular at the ergosphere does not alter the properties of the theory

near the critical solution. In particular the scaling exponents characterizing the discrete

self-similar behavior of the theory remain the same. So henceforth we will focus on the

study of the Minkowski type of embeddings. The analysis is completely analogous to the

one performed in the previous subsection.

In order to focus on the space-time region close to the conical singularity of the critical

embedding, we consider the change of coordinates:

u = uerg +
uHq1
Ruerg

z; cos θ =
π

2
− y

R
, (3.32)

where

u2
erg = u2

H − q22 (3.33)

is the radial coordinate u of tip of the critical embedding or equivalently the θ = π/2 point

of the ergosphere. It can be shown that for the values of q2 for which the geometry is not

over spun (and so has an horizon) the corresponding value of uerg is real.

After leaving only the leading terms in z and y, we get:

ds2/α′ = −D1zdt
2 + dz2 + dy2 + y2dΩ2

3 − 2q1dtdφ1 +
u2

H

R2
d~x2 +R1dφ

2
1 , (3.34)

dΩ3 = dψ2 + sin2 ψdφ2
2 + cos2 ψdφ2

3 ; D1 =
4q1uH

R3
; R2

1 =
u2

erg + q21
u2

H

R2 .

The metric in equation (3.34) is of the same type as that in equation (3.10), namely

flat space with some compact directions in a rotating frame. Therefore the analysis is

completely analogous to the one for the electric case and hence the scaling exponents are

3Note that in [18] the ergosphere class of embeddings are not extended along φ1.
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Figure 4: Plot of the relation between the bare quark mass parameter m and the distance above

the ergosphere (u0 − uH). The plot is for q = 0.5 in units in which uH = 1. The solid line is a fit

with trigonometric functions of a period 2π. The plot confirms that the scaling exponents of the

theory are r3 = 5/4 and α3 =
√

31/4.

again given by equation (3.22) with n = 3, because the D7-branes are wrapping an internal

S3:

r3 = 5/4 ; αn =
√

31/4 . (3.35)

We can again verify this numerically. It is convenient to do this for the single charge case,

namely q1 6= 0, q2 = q3 = 0. The plot analogous to figure 3 for the electric case, is presented

in figure 4. The plot represents the variation of the bare quark mass parameter m as a

function of the initial boundary condition u0 − uH , for Minkowski-type embeddings. The

parameter m∗ corresponds again to the bare quark mass for the state corresponding to

the critical embedding. The good agreement with the result for the critical exponents in

equation (3.22) is clear, and the accuracy of the analytic description improves as we go

deeper into the spiral (to the left).

An important observation is that our result does not depend on the values of the R-

charges, nor the temperature. In fact, this physics persists at zero temperature, such as at

extremality with all three charges equal q1 = q2 = q3 = q, or more generally. (Extremality

is when uE = u1 or u2, for which T = 0. See equation (3.28).) The fact that we have

the same structure at zero temperature (extremal horizon) further confirms that the key

properties of the corresponding phase transition is indeed driven by the quantum (rather

than thermal) fluctuations of the system.

4. Criticality and scaling: some generalizations

In this section we generalize the procedure for the study of the critical behavior employed

in all three different systems of phase transition (thermal, or in the presence of electric

field or R-charge chemical potential). This may lay the groundwork for other types of

phase transitions that may arise in future studies, seeded by spirals with different universal

behaviour.

Note that in all cases there is some vanishing locus. The different classes of Dq-brane’s

embeddings are being classified with respect to whether they fall into that vanishing locus,
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or wrap an internal Sn sphere that is contracting to zero size above the vanishing locus

signaling the end of the Dq-brane.

In all cases there is a critical embedding that separates the two classes of embeddings.

The critical embedding reaches the vanishing locus and has a conical singularity there at

some finite radius u∗ (u∗ = uH or uerg for the thermal and R-charge cases).

The main point of the analysis is that after zooming into the space-time region near

the conical singularity we obtain the metric:

ds2 = −Dzkdt2 + dz2 + dy2 + y2dΩ2
n + . . . , (4.1)

where D is a non-essential constant. The Dirac-Born-Infeld Lagrangian of the brane is

then:

L ∝ zk/2yn
√

1 + y′2 . (4.2)

Note that to extract the key behavior (that we are studying) of this critical embedding (and

its neighbourhood) there is no need to modify the embeddings which reach the vanishing

locus (as we did for the ergosphere class of embeddings) . The critical solution and the

linearized equation of motion is the same for both classes. Therefore it is sufficient to

consider the Minkowski type of embeddings and analyze the Lagrangian (4.2). The resulting

equation of motion is:

∂z

(

zk/2yny′
√

1 + y′2

)

− nyn−1zk/2
√

1 + y′2 = 0 . (4.3)

It is easy to check that equation (4.3) has the scaling property (3.13) and the limiting

critical solution is given by:

y∗(z) =

√

2n

k
z . (4.4)

Now after the substitution:

y(z) =

√

2n

k
z + ξ(z) , (4.5)

we obtain the following linearized equation:

z2ξ′′(z) + (n+ k/2)(zξ′(z) + ξ(z)) = 0 . (4.6)

The general solution of equation (4.6) can be written as:

ξ(z) =
1

zr
(k)
n

(A cos(α(k)
n ) ln z) +B sin(α(k)

n ln z) , (4.7)

where

r(k)
n = (n+ k/2 − 1)/2; α(k)

n =
1

2

√

4(n + k/2) − (n+ k/2 − 1)2; (4.8)

are the scaling exponents characterizing the self-similar behavior of the theory. Both being

real, they control the shape of the spiral which emanates from the critical solution. The

oscillatory behavior is present for n ≤ 3 + 2
√

2 − k/2. For these values of n the theory
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exhibits a discrete self-similarity and the equation of state c = c(m) is a multi-valued

function suggesting that the corresponding phase transition is a first order one.

While there is the possibility of complex scaling exponents and hence possibly second

order phase transitions (if the multi-valuedness goes away when the spiral does), this is

not realized in the examples that we know from string theory.

Note that we have k = 2 for a thermal induced phase transition and k = 1 for the

quantum induced phase transitions that we studied (external electric field and R-charge

chemical potential), arising from the two most natural types of a vanishing locus that one

may have: an horizon, and an ergosphere. Perhaps other systems will yield different values

of k.

5. Closing remarks

We have succeeded in casting two important types of phase transition (in large Nc gauge

theory with fundamental flavours) into the same classifying framework as the meson-

melting phase transition. These quantum fluctuation induced transitions (so-called since

they persist at zero temperature), resulting in the liberation of quarks from being bound

into mesons as a result of the application of an external electric field, or a chemical poten-

tial for R-charge, turn out to have the same underlying structure. It is distinct from that

found for thermal fluctuation induced transitions. The structures are controlled by the

local geometry of the spacetime seen by a critical D-brane embedding (it is the borderline

case between two physically distinct classes of embedding), and while it is Rindler for the

thermal case with an horizon at the origin, it is (after a T-duality in order to geometrize

the discussion as much as possible) a rotating space with a simple “ergosphere” type lo-

cus. The technique of characterizing the physics in terms of this underlying classifying

space [7, 9] is rather pleasing in its utility, and we extended our analysis to the natural

generalization of this space, extracting the scaling exponents that might pertain to physics

from future studies.

Of course, there is much interest in how much we can learn about finite Nc physics (for

applications to systems such as QCD) by studying universal features of large Nc. Unfor-

tunately, it is almost certain that much of this is far from robust against 1/Nc corrections.

The spiral structure is rather delicate, and the stringy corrections arising in going away

from the large Nc limit would generically severely modify the classifying spacetimes we’ve

been studying, erasing the spiral and its self-similarity. The absence of the spiral is nec-

essary for there to be (at best) a second-order transition at finite Nc, since it results in

multi-valuedness of the solution space, requiring the system to perform a first order jump.

It is tempting to speculate, however, that the nature by which the spiral is destroyed

by 1/Nc corrections might (especially since the setting is so geometrical) be characterizable

in a way that allows universal properties of the second (or higher) order phase transitions

to be deduced from the properties of the spiral at large Nc. We leave such explorations for

later work.
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